Annual Drinking Water Quality Report CENTERVILLE WATER DEPARTMENT (IN5289003)

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is ground water which is pumped by three wells from an underground aguifer.

Source Water Information

Source Water Name	Type of Water	Report Status	Location
Well #1	GW	Active	Treatment Plant #1
Well #2	GW	Active	Treatment Plant #1
Well #3	GW	Active	Treatment Plant #2

We have a source water assessment plan available from our office that provides more information such as potential sources of contamination.

We are pleased to report that our drinking water is safe and meets federal and state requirements.

If you have any questions about this report or concerning your water utility, please contact Kevin Slick at 765-855-5515.

We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Tuesday of each month at 7:00pm in the Municipal Building located at 204 E. Main St.

The Centerville Water Department routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2021. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Non-Detects (ND) - laboratory analysis indicates that he constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/L) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Millirems per year (mrem/yr) - measure of radiation absorbed by the body.

Level 1 Assessment - Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in the water system.

Level 2 Assessment - A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in the water system on multiple occasions.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulated Contaminants

Disinfection By-Products	Sample Point	Period	Highest LRAA	Range	Units	MCL	MCLG	Likely Source of Contamination
Haloacetic Acids (HAA5)	510 W. Main	2022-23	2	1.5-1.5	ppb	60	0	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	510 W. Main	2022-23	4	3.52-3.52	ppb	80	0	By-product of drinking water chlorination
Disinfectant	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	2023	0.66	0.10-0.66	4	4	ppm	N	Water additive used to control microbes
Haloacetic Acids (HAA5)	2023	1.5	1.5-1.5	No goal for the total	60	ppb	N	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	2023	3.52	3.52-3.52	No goal for the total	80	ppb	N	By-product of drinking water disinfection
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2021	0.1	.058 - 0.1	2	2	ppm	N	Discharge of drilling waters; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2021	0.131	.11 - 0.131	4	4	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate (measured as Nitrogen)	2023	3.26	<1.0-3.26	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Selenium	2021	2.9	0.0 - 2.9	50	50	ppb	N	Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Gross alpha	2022	2.59	0.72-2.59	0	15	pCi/L	N	Erosion of natural deposits.
Radium 228	2022	0.53	0.36-0.53	0	5	pCi/L	N	Erosion of natural deposits.
Microbiological	Results			MCL MCLG				Typical Source
Coliform (TCR)	In the month of positive	August, 1 samp	ole returned as	Treatment To Trigger	echnique	0		Naturally present in the environment.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known of expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Lead and Copper	Collection Date	MCLG	Action Level	90th	# Sites	Units	Violation	Likely Source of Contamination
			(AL)	Percentile	Over AL			
Copper	2021	1.3	1.3	0.14	0	ppm	N	Erosion of natural deposits; Leaching from wood
								preservatives; Corrosion of household plumbing.
Lead	2021	0	15	1.1	0	ppb	N	Corrosion of household plumbing systems; Erosion
								of natural deposits.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- *Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and Herbicides which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- *Organic Chemical Contaminants including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- *Radioactive materials, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Nitrates: As a precaution we always notify physicians and health care providers in this area if there is ever a higher than normal level of nitrates in the water supply.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

We at Centerville Water Department work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.